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Abstract.
Background: With the rapid development of neurobiology and neuroimaging technologies, mounting evidence shows that
Alzheimer’s disease (AD) is caused by the build-up of two abnormal proteins, amyloid-� plaques (A) and neurofibrillary
tangles (T). Over time, these AD-related neuropathological burdens begin to spread throughout the brain, which results in
the characteristic progression of symptoms in AD.
Objective: Although tremendous efforts have been made to link biological indicators to the progression of AD, limited
attention has been paid to investigate the multi-factorial role of socioeconomic status (SES) in the prevalence or incidence
of AD. There is high demand to explore the synergetic effect of sex and SES factors in moderating the neurodegeneration
process caused by the accumulation of A and T biomarkers.
Methods: We carry out a meta-data analysis on the longitudinal neuroimaging data, clinical outcomes, genotypes, and
demographic data in Alzheimer’s Disease Neuroimaging Initiative (ADNI) database (http://adni.loni.usc.edu).
Results: Our major findings include 1) education and occupation show resilience effects at the angular gyrus, superior parietal
lobule, lateral occipital-temporal sulcus, and posterior transverse collateral sulcus where we found significant slowdown
of neurodegeneration due to higher education level or more advanced occupation rank; 2) A and T biomarkers manifest
different spatial patterns of brain resilience; 3) BDNF (brain-derived neurotrophic factor) single nucleotide polymorphism
(SNP) rs10835211 shows strong association to the identified resilience effect; 4) the identified resilience effect is associated
with the clinical manifestation in memory, learning, and organization performance.
Conclusion: Several brain regions manifest resilience from SES to A and T biomarkers. BDNF SNPs have a potential
association with the resilience effect from SES. In addition, cognitive measures of learning and memory demonstrate the
resilience effect.
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INTRODUCTION

Alzheimer’s disease (AD) is a common neurode-
generative disorder with characteristic pathologic
changes. Although the underlying pathophysiologi-
cal mechanism of AD progression is largely elusive,
the underlying pathologic processes can be docu-
mented by postmortem examination or in vivo by
biomarkers [1, 2]. The most commonly used biomark-
ers in research and clinic areas include amyloid-�
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(A�) deposition, pathologic tau, and neurodegenera-
tion (such as cortical thickness), which constitute the
backbone of the A-T-N research framework of AD
[1].

The rapid development of neuroimaging technolo-
gies enables in vivo measurement of the pathologic
burden using biomarkers. For example, A� plaques
and fibrillar tau can be quantified at different
brain regions through the cortical A�-PET and tau-
PET ligand binding, respectively [3]. Biomarkers
of neurodegeneration or neuronal injury include
cerebrospinal fluid (CSF) tau, fluorodeoxyglucose
(FDG)-PET hypometabolism, and atrophy on MRI
[3]. In the recent A-T-N research framework, the
most popular hypothesis of the mechanistic pathway
is that amyloidosis induces or facilitates the spread
of pathologic tau, which is immediately proximate to
neurodegeneration [4].

The preservation of normal cognition despite
underlying neuropathology has been termed
resilience. Converging evidence shows that cognitive
decline is not only regulated by the abnormal depo-
sition of A� or tau, but also potentially moderated
by the brain’s ability to maintain normal cognition
[5–7]. Brain resilience has been quantified in various
ways. For example, the operational measure of
the brain reserve [8] is defined as the standardized
individual difference between the observed and
predicted gray matter volume. Recently, intelligence
quotient (IQ) was used as a proxy for cognitive
reserve [9], where high premorbid IQ was linked to
lower cognitive age independent of brain age. In our
previous work [10], we presented a regression model
to investigate this cognitive reserve proxy, where
the response is the severity of AD progression and
the predictors include age, sex, pathology burden,
education, AD polygenic risk score, and their inter-
actions. Our hypothesis was that the counteracting
effect size of the joint product of AD pathology
(measured by tau/A�42 ratio) and socioeconomic
status (SES) factors (measured by educational level
and occupation level) moderates cognitive decline
and can be used as the computational proxy of
cognitive reserve. Given this new proxy of cognitive
reserve, we found that the high education group
has more resilience to AD pathology than the low
education group, however, at the expense of faster
cognitive decline after the neuropathology burden is
beyond the tipping point.

Although significant efforts have been made to
characterize cognitive resilience by investigating
the relationship between clinical outcome and neu-

ropathology burden, few studies have examined the
characteristics of resilience at different brain regions.
In the current study [10], we propose a model for
a proxy measurement of resilience at the patholog-
ical biomarker level. This model includes the joint
effect of sex and SES moderators. Our regression
model predicts the degree of future neurodegener-
ation found on FDG-PET scan using the baseline
A� or tau biomarker, where age, sex, SES factors,
and the sex-by-SES interaction are confounding vari-
ables. Similar to our previous work [8], we further
characterize resilience at each brain region which
allows us to investigate the spatial patterns of cogni-
tive reserve in the brain. For the brain regions showing
a significant resilience effect, we conduct 1) upstream
association with genotypes to explore the genetic
factors that may account for the resilience; and 2)
downstream association with clinical outcomes. As
multiple lines of evidence show that women are at
greater risk for both developing AD and having more
severe pathology after age 65 [11], we go one step
further to examine whether the identified resilience
effects manifest sex-specific differences.

All the meta-data analyses are performed on geno-
type data, neuroimaging data, and demographic data
from Alzheimer’s Disease Neuroimaging Initiative
(ADNI) database. We find there are a moderate num-
ber of regions showing resilience to either A� and tau
pathology. However, there is no brain region showing
resilience to both A� and tau pathology. We find one
single nucleotide polymorphism (SNP), rs10835211,
in the brain-derived neurotrophic factor (BDNF) gene
family has a strong association with the identified
resilience effect, indicating the beneficial influence of
neuroplasticity on the brain resilience observed at the
pathological level. Downstream association between
the identified resilience effect and clinical outcomes
reveals that the clinical manifestations on learning,
memory, and organization are closely related to the
resilience effect. Sex difference of resilience effect
has not been detected either for A� or tau pathology.

MATERIALS AND METHODS

Data descriptions

The data used in our study were obtained from the
ADNI database (http://www.ida.loni.usc.edu). ADNI
seeks to develop biomarkers, advance the under-
standing of AD pathophysiology, improve diagnostic
methods for early detection of AD. Additional goals
are examining the rate of progress for both mild cog-

http://www.ida.loni.usc.edu
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nitive impairment (MCI) and AD, as well as building
a large repository of clinical and imaging data. ADNI
enrolls participants between the ages of 55 and 90
who are recruited at 57 sites in the United States and
Canada. After obtaining informed consent, partici-
pants undergo a series of initial tests that are repeated
at intervals over subsequent years, including clinical
evaluation, neuropsychological tests, genetic testing,
lumbar puncture, and MRI and PET scans. There are
four phases of the ADNI study (ADNI1, ADNI-GO,
ADNI2, and ADNI3). Some participants were carried
forward from previous phases for continued moni-
toring, while new participants were added with each
phase to further investigate the evolution of AD.

Regarding the neuropathological imaging data, the
concentration level of A�, tau, and metabolism neu-
rodegeneration biomarker can be measured using
A�-PET, tau-PET, and FDG-PET, respectively. In
this study, we use Destrieux atlas [12] which consists
of 148 cortical regions. For each PET image, we apply
a set of image processing steps to calculate the aver-
age SUVR (standardized uptake value ratio) for each
region. Note, SUVR is the most common quantitative
method used to make regional comparisons within a
subject as well as between subjects and computed
as the degree of radiotracer uptake in a target region
of interest with respect to a reference region. The
data processing pipeline includes 1) skull stripping,
2) segmenting tissue into white matter, grey matter,
and CSF, 3) registering to the underlying image, and
4) calculating the SUVR degree for each ROI which
is normalized by the whole cerebellum reference. We
further visualize the average regional SUVR of A�
and matched FDG-PET in the left panel of Fig. 1.
Likewise, we display the average regional SUVR of
tau and the matched FDG-PET in the right panel of
Fig. 1.

Regarding the SES data, the years of education and
occupations were recorded in the ADNI database in
recruiting subjects. We classified education and occu-
pation as the same criteria used in Lo’s study [13].

Years of Education were divided into three categories:
high (years of education > 17 years), intermediate
(years of education 15–17 years), and low (years of
education<15 years). The occupation considered is
the one that the subject performed during most of
his/her adult life or with the longest time of service.
The occupation level was classified into three groups
according to the National Statistics Socio-economic
classification [14]: 1) high level (professional or man-
agerial), 2) intermediate level (skilled), and 3) low
level (partly skilled or unskilled).

Regarding the genotype data, we calcu-
lated the AD-related polygenic risk score
(PRS) for each subject. First, we filtered
the SNP in the GWAS results in CTG lab
(https://ctg.cncr.nl/software/summary statistics)
by MAF greater than 0.01. Then, the SNPs were
LD pruned with r2 = 0.1 in a 1000 kb window,
324,982 SNPs were left after the pruning. And
we utilized PLINK 1.9 to calculate the weighted
PRS of Alzheimer’s disease using SNPs with AD
association of p < 10−4.

Regarding the demographic data, we show the
age and gender information of participants in
Table 1. Since we measure the resilience specific
to the A�-to-neurodegeneration (A-N) and tau-
to-neurodegeneration (T-N) mechanism pathways
separately, each subject is required to have imaging
data from two modalities. There are 1,086 subjects
who have both A�-PET and FGD-PET data and 346
subjects who have both tau-PET and FGD-PET data.
For participants in the A-N model, the average age is
72.8 years old, 53.9% are male, 60.7% have a pro-
fessional or managerial occupation, and 38.9% have
years of education longer than 17 years. For partici-
pants in the T-N model, the average age at baseline is
71.4 years old, 54.3% are male, 65.3% have the pro-
fessional or managerial occupation, and 42.8% have
years of education longer than 17 years.

Regarding the clinical outcome data, there are
22 items in clinical data (Table 2), including Rey’s

Fig. 1. Left: The average regional SUVR degree of A� and the matched FDG-PET from 1,086 subjects. Right: The average regional SUVR
degree of tau and matched FDG-PET image from 346 subjects.

https://ctg.cncr.nl/software/summary_statistics
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Table 1
Demographic characteristics of participants in A-N and T-N

models

Resilience A-N resilience T-N resilience
models (N = 1,086) (N = 346)

Age 72.8 (7.20) 71.4 (7.00)
Gender

Male 585 (53.9%) 188 (54.3%)
Female 501 (46.1%) 158 (45.7%)

Occupation
Low 84 (7.7%) 22 (6.4%)
Medium 343 (31.6%) 98 (28.3%)
High 659 (60.7%) 226 (65.3%)

Education
Low 309 (28.5%) 94 (27.2%)
Medium 355 (32.7%) 104 (30.1%)
High 422 (38.9%) 148 (42.8%)

*Data are in mean (SD) for continuous variables and in (%) for
categorical variables.

Auditory Verbal Learning Test (RAVLT) scores, Log-
ical Memory test, Trail Making Test, and Everyday
Cognition (Ecog) scales (self-reported/study part-
ner reported). We matched the clinical data to our
imaging data. There are 1,016 participants with both
A�-PET and clinical outcome data, and 331 partici-
pants with both tau-PET and clinical outcome data.

Statistical analysis

We first present a set of statistical models to iden-
tify and quantify resilience at each brain region by
examining the relationship of A� and tau biomarkers.

We specifically model the joint effect of sex and SES
factors in our model, which allows us to understand
the moderating factors behind the neuropathology.
For the regions showing resilience to the development
of neurodegeneration, we will examine the associa-
tion with genotype of the BDNF gene and clinical
outcomes using sparse canonical correlation analysis
(sCCA) [15].

Identify and quantify resilience effect of
neurodegeneration

Rationale
There is a converging consensus that A� and tau

biomarkers are two major reasons for neurodegen-
eration in the current A-T-N research framework
[1]. In general, the brain manifests more and more
severe neurodegeneration patterns as the level of
A and T biomarkers increase. On the flip side,
it is quite common in the clinic that some indi-
viduals maintain cognitive normal even the A-T-N
biomarker level is beyond the diagnostic cut-offs [7].
Along with our previous work [10], many cognitive
reserve studies regard SES factors as the proxy of
measuring cognitive reserve [16]. In this paper, we
extend the statistical model in [10] to characterize
the A/T-specific resilience effect of neurodegener-
ation at each brain region. Specifically, we opt to
predict the regional degree of N biomarker (using
FGD-PET) at the follow-up scan (2-3 years after)

Table 2
The summary of 22 itemized clinical outcomes

Outcome Name Description Mean (SD)

RAVLT immediate RAVLT Immediate 37.9 (12.7)
RAVLT learning RAVLT Learning 4.75 (2.71)
RAVLT forgetting RAVLT Forgetting 4.33 (2.82)
RAVLT perc forgetting RAVLT Percent Forgetting 53.2 (39.5)
LDELTOTAL Logical Memory - Delayed Recall 8.73 (5.32)
TRABSCOR Time to Complete Trail Making Test 111 (68.0)
FAQ Functional Activities Questionnaire Total Score 3.53 (5.87)
MOCA Montreal Cognitive Assessment 23.3 (3.95)
EcogPtMem Participant ECog - Mem 2.09 (0.718)
EcogPtLang Participant ECog - Lang 1.72 (0.621)
EcogPtVisspat Participant ECog - Vis//Spat 1.37 (0.516)
EcogPtPlan Participant ECog - Plan 1.40 (0.542)
EcogPtOrgan Participant ECog - Organ 1.52 (0.611)
EcogPtDivatt Participant ECog - Div atten 1.80 (0.733)
EcogPtTotal Participant ECog - Total 1.67 (0.523)
EcogSPMem Study Partner ECog - Mem 2.06 (0.925)
EcogSPLang Study Partner ECog - Lang 1.62 (0.732)
EcogSPVisspat Study Partner ECog - Vis//Spat 1.47 (0.703)
EcogSPPlan Study Partner ECog - Plan 1.58 (0.790)
EcogSPOrgan Study Partner ECog - Organ 1.67 (0.873)
EcogSPDivatt Study Partner ECog - Div atten 1.86 (0.937)
EcogSPTotal Study Partner ECog - Total 1.71 (0.739)
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using the baseline A/T biomarker level. In addition
to the confounders such as age and sex, we model
the joint effect of A/T biomarkers and SES factors
in our model. In this regard, we conceptualize the
mechanism of A/T-specific resilience as a joint prod-
uct of neuropathological burden and socioeconomic
factors, where the resistant effect can be captured by
estimating the counteracting relationship between N
and A/T biomarkers.

Statistical model
Suppose we have the regional A/T biomarker and

N biomarker for in total P subjects. We parcellate
each brain into Q regions. We apply the following
linear regress model at each brain region Rj (j =
1, . . . , Q), where the response is the N biomarker y

i,j
N

(i = 1, . . . , P) measured from the FDG-PET image.
One major predictor is the regional A or regional
T biomarker x

i,j
A/T . Since we categorize education

and occupation into low, middle, and high levels,
we include xi

Mid Edu and xi
High Edu for the relative

education level (with respect to the low education
group) while xi

Mid Occu and xi
High Occu for the rel-

ative occupation category (with respect to the low
skilled group). Here, age xi

age, sex xi
sex, and AD-PRS

xi
PRS are considered as confounding variables. Fur-

thermore, the interaction effect term consists of SES
factors, and A/T biomarker value. Thus, we have four
instances of the joint effect term given the combi-
nation of two neuropathology biomarkers (A or T)
and two SES factors (either education or occupa-
tion level). To simplify, we present the following four
regression models with respect to different joint effect
terms:

• A-specific resilience from education:

y
i,j

N
= β0 + β1x

i,j

A
+ β2x

i
sex + β3x

i
PRS

+ β4x
i
Age

+ β5x
i
Mid Edu

+ β6x
i
High Edu

+ β7x
i
Mid Occu

+ β8x
i
High Occu

+ β9

(
x

i,j

A
· xi

Mid Edu

)
+ β10

(
x

i,j

A
· xi

High Edu

)
+ εi,j (1)

• A-specific resilience from occupation:

y
i,j

N
= β0 + β1x

i,j

A
+ β2x

i
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i
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i
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i
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i
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i
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(
x
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A
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)
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(
x
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A
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High Occu

)
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• T-specific resilience from education:

y
i,j

N
= β0 + β1x

i,j

T
+ β2x

i
sex + β3x

i
PRS

+ β4x
i
Age

+ β5x
i
Mid Edu

+ β6x
i
High Edu

+ β7x
i
Mid Occu

+ β8x
i
High Occu

+ β9

(
x

i,j

T
· xi

Mid Edu

)
+ β10

(
x

i,j

T
· xi

High Edu

)
+ εi,j (3)

• T-specific resilience from occupation:

y
i,j

N
= β0 + β1x

i,j

T
+ β2x

i
sex + β3x

i
PRS

+ β4x
i
Age

+ β5x
i
Mid Edu

+ β6x
i
High Edu

+ β7x
i
Mid Occu

+ β8x
i
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x

i,j

T
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+ β10

(
x
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T
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Given the evidence regarding AD pathogenesis,
we posit that regional A/T resilience should be meet
the following two criteria: (1) The pathology burden
x
i,j
A/T shows significant contribution to the neurode-

generation at the underlying region. Since lower
metabolism level y

i,j
N and higher neuropathological

degree x
i,j
A/T indicate high risk of developing AD, we

expect the sign of β1 is negative and the biomarker
term x

i,j
A/T shows significance without the interaction

term. (2) Since resilience is defined as the moder-
ation effect against neurodegeneration, we expect
the sign of β9 or β10 is positive and the associated
joint effect term shows significance. By applying the
above four statistical models to each brain region, we
are able to not only identify whether the underlying
regions manifest A/T-specific resilience effects but
also understand the driving SES factors behind the
resilience.

Suppose one of the joint-effect terms meets the
above two criteria in either regression model in Eq.
1–4 at the region Rj . Then, we can calculate the
resilience effect for each subject by multiplying the
value of the joint term and the corresponding esti-
mated effect size. With slight abuse of notation, we
use yi

res to denote the individual-based resilience
effect for ith subject for one specific type (either A to
T) of resilience effects at the specific regions.

Genetic association with neuroplastic related
genetic markers

There is accumulating evidence that the BDNF
gene acts in a protective role and may moderate
the neurodegeneration process in AD [17, 18]. In
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this context, we use the candidate gene approach to
investigate the association between the A/T-specific
resilience effect and the SNPs in the BNDF gene,
which allows us to discover the genetic factors asso-
ciated with the identified resilience effect.

To avoid the cost of genome-wide multiple com-
parisons, we only focus our analysis on several
commonly-reported SNPs in BDNF [19]. The fol-
lowing linear regression model was used to explore
the association between the A/T-specific resilience
effect yi

res and each BDNF SNP xSNP , separately. To
adjust for the population stratification, we further add
the first three principal components of SNPs into the
model as:

yi
res = β0 + β1xSNP + β2xPC1 + β3xPC2 + β4xPC3 + εi (5)

where xPC1, xPC2, and xPC3 are the first three princi-
pal components, respectively.

Linking multiple domains of clinical symptom to
the identified resilience effect

Suppose we have identified p resilience effects for
each subject, including all possible resilience from
Equation 1 to Equation 4. Each subject also has q clin-
ical outcome measures. Thus, given n subjects, we
can form a data matrix of resilience effectsX ∈ Rn×p

and another data matrix of clinical measurements
Y ∈ Rn×q. We use CCA to jointly align X and
Y by estimating the loading vectors u ∈ Rp×d and
v ∈ Rq×d such that the transformed data matrix Xu
and Yv have the largest correlation degree, where
d ≤ min (p, q). To make it easier to interpret the
result, we further add �1-norm sparsity constraint on
u and v, where the objective function is represented
as:

arg max
u,v

uTXTYv, subject to ‖u‖2
2 ≤ 1, ‖v‖2

2 ≤
1, ‖u‖1 ≤ c1, v1 ≤ c2, (6)

where c1 and c2 are scalar variables controlling
the strength of sparsity. u and v can be solved by
[20]. In this study, we focus on the loading vectors v
since each column in v describes one combination of
clinical vectors that links with the resilience effects.
Similar to applying PCA (principle component anal-
ysis) for dimension reduction, the first column vector
in v (associated with the largest Eigenvalue of XTY)
describes the dimension that explains largest vari-
ations in Yv that links with uTXT in the latent
common space, and so on.

We conduct a grid search in increment of 0.1 to
determine the combination of parameters (i.e., c1 and

c2) that would yield the highest canonical correlation
of the first variate across ten randomly resampled
samples, each consisting of two-thirds of the full
dataset. Then, we apply a 1000-times permutation
testing procedure to assess the statistical significance
of each canonical variate. Here, we hold the resilience
matrix constant and then shuffled the rows of the clin-
ical matrix so as to break the linkage of resilience and
clinical features. Then we performed sCCA using
the same set of regularization parameters to gener-
ate a null distribution of correlation after 1000-time
permutation procedure. The p-value (Pperm), was
estimated as the number of null correlations (ri) that
exceed the average sCCA correlations estimated on
the original dataset (r̄), with false discovery rate cor-
rection across the top canonical variates selected by
scree plot:

Pperm =

∑1000
i=1

{
1, if ri ≥ r̄

0, if ri ≤ r̄

1000
(7)

To further select clinical features that consistently
contributed to each canonical variate, we performed a
1000-times bootstrap resampling procedure. Features
whose 95% and 99% confidence intervals (for clini-
cal and resilience features, respectively) did not cross
zero were considered significant, suggesting that they
were stable across different sampling cohorts.

Explore the sex difference in resilience effect

Many studies show that normal women with ele-
vated A� are more vulnerable to episodic memory
decline than men [21]. Whether sex have a modera-
tion effect in AD neuropathology? Here, we integrate
the synergetic effect of sex and A/T-specific effect in
the model, which allows us to investigate the possible
sex difference in moderating the neurodegenerative
procession. To do so, we add a three-way interaction
to the brain regions where A/T-specific resilience has
been found in one of the statistical models above. For
example, suppose we find the education-by-A� inter-
action term satisfies the resilience definition. We can
add the eduction-by-A�-sex term into the underly-
ing model and examine whether the new three-way
interaction term exhibits significance. The sign of
the corresponding effect size allows us to determine
whether males or females have the advantage to neu-
ropathology burden at the particular brain region.
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Table 3
The statistical summary of the nodes with significant A-specific resilience w.r.t. eduction

Region name βAmyloid×Mid Edu Unadjusted βAmyloid×High Edu Unadjusted
(Standard Error) p (Standard Error) p

L. angular gyrus 0.034 (0.031) 0.265 0.059 (0.029) 0.043*
L. superior parietal lobule 0.055 (0.026) 0.038* 0.042 (0.025) 0.091
R. angular gyrus 0.031 (0.032) 0.320 0.082 (0.030) 0.005*

*The significant level is 95% and the sample size is 1,086.

Fig. 2. The brain regions bear A-specific resilience w.r.t. educa-
tion.

RESULTS

A/T-specific resilience effect underlying SES
factors

First, we examine the A-specific resilience effect
by applying the statistical models in Equation 1-2 to
148 brain regions. The statistical testing results of A-
specific resilience w.r.t. eduction are summarized in
Table 3, where the regions that satisfy our resilience
definition (not only pathology-by-eduction interac-
tion show significance but also the effect size has
positive value) are shown. Specifically, we observed
significant effects (p < 0.05) of A� at 47 nodes.
Among these regions, three regions (L/R angular
gyrus and L. superior parietal lobule) showed the
significant A-specific resilience effect from higher
education (either at medium or high education level),
as shown in Fig. 2. However, no nodes were observed
having A-specific resilience w.r.t. occupation.

Second, we examine the T-specific resilience for
each brain region with regards to education and occu-

Fig. 3. Only left posterior transverse collateral sulcus bears the
T-specific resilience w.r.t. eduction.

pation using the statistical models in Equation 3-4,
respectively. Similarly, we display the statistical test-
ing results for the regions satisfying our resilience
definition in Table 4. We observed Tau pathol-
ogy exhibit significant resilience effects (p < 0.05) at
61 brain regions. On top of this, only one region
(posterior transverse collateral sulcus) in the left
hemisphere T-resilience w.r.t. education, which is
shown in Fig. 3. Two regions, both from the right
hemisphere, are found associated with T-resilience
w.r.t. occupation, which are shown in Fig. 4.

Since the non-linear model is not employed in this
work, we performed the linear assumption diagnosis
and found some extreme outliers. After we conduct
a sensitivity analysis removing all the extreme out-
liers, all discoveries regarding the biomarker-specific
resilience remain the same.

Table 4
The summary statistics of the nodes with significant T-resilience w.r.t education and occupation

SES factor Region name βTau×Mid SES Unadjusted p βTau×High SES Unadjusted p

(Standard Error) (Standard Error)

Education
L. posterior transverse collateral sulcus 0.105 (0.051) 0.041* 0.120 (0.048) 0.013*

Occupation
R. posterior transverse collateral sulcus 0.096 (0.060) 0.111 0.097 (0.041) 0.017*

R. lateral occipito-temporal sulcus 0.079 (0.036) 0.030* 0.040 (0.030) 0.188

*The significant level is 95% and the sample size is 346.
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Fig. 4. Two brain regions (R. posterior transverse collateral sul-
cus and R. lateral occipitotemporal sulcus) bear the T-specific
resilience w.r.t. occupation.

Genetic association analysis with neuroplastic
markers

Among the selected BDNF SNPs (Table 5), only
rs10835211 was found to be statistically associated
with A-specific resilience score (w.r.t. education) at
the left/right angular gyrus and left superior parietal
lobule. The angular gyrus is involved in processing
concepts [22] and superior parietal lobule is related
to working memory and visual perception.

Due to the limited sample size, however,
rs10835211 fails to survive the False Discovery Rate
(FDR) correction. The detail of statistical results is
summarized in Table 6. By examing the Lucas-zoom
plot (Fig. 5), there is a clear sign that rs10835211
is much more correlated to the resilience effect than
other SNPs.

Linked dimensions between clinical symptom to
the identified A-specific resilience effect

Due to the sample size, we only used the identi-
fied A-specific resilience effect to link the itemized
cognitive outcomes shown in Table 2. Based on

the scree plot of covariance explained, we selected
the first two canonical variates for further analysis.
The significance of each of these linked dimensions
of cognitive outcome and resilience was assessed
using a permutation test. FDR was used to con-
trol for type I error rate due to multiple testing. Of
the top two canonical variates, both were signifi-
cant (canonical variate #1: Pearson correlation r =
0.13, PFDR=0.008; canonical variate #2: r = 0.12,
PFDR=0.016). The resampling procedure revealed
that 4 of those 22 clinical outcomes reliably con-
tributed to at least one of the two linked dimensions.
These cognitive outcomes were the learning evalua-
tion in RAVLT, a measure of verbal memory. Many
patients with mild cognitive impairment begin to
show episodic memory deficits early in their clini-
cal course. Higher cognitive reserve has also been
found to be associated with improved episodic mem-
ory in older adults [23]. The total participant everyday
cognition score as well as the memory and organi-
zation domains of the study partner report on the
everyday cognition test. The everyday cognition test
assesses mild functional changes that are associated
with early cognitive deficits. A previous model in
patients with subjective cognitive decline found a
strong association between the executive function
domain of everyday cognition and tau as well as
the memory domain and A� [24]. Specifically, we
mapped these data-driven items to typical clinical
diagnostic categories, as shown in Fig. 6. It is clear
that the first linked dimension implies that the identi-
fied A-specific resilience is not only associated with
the total score on the Ecog test (sCCA coefficient:
0.38) in general but also correlated with two specific
items (study partner memory: sCCA coefficient 0.48;
study partner organization: sCCA coefficient 0.67) in

Table 5
BDNF SNP location and information details

SNP Major/ Minor Minor Allele Chromosome Inter-marker Location
Frequency Positiona Distanceb

rs11030094 A/G 10.3% 27659775 0 Intergenic
rs925946 T/G 40.4% 27667202 7,427 Intergenic
rs10501087 T/C 39.8% 27670108 2,906 Intergenic
rs2203877 T/C 9.1% 27670910 802 Intergenic
rs6265 C/T 36.1% 27679916 9,006 Nonsynonymous
rs11030104 A/G 39.9% 27684517 4,601 Intron
rs11030108 G/A 40.0% 27695464 10,947 Intron
rs10835211 G/A 47.7% 27701365 5,901 Intron
rs7934165 G/A 4.2% 27731983 30,618 Intron
rs1157659 T/C 7.2% 27741419 9,436 Intergenic
rs12273363 T/C 39.7% 27744859 3,440 Upstream
rs908867 C/T 17.3% 27745764 905 Upstream
rs1491850 T/C 15.4% 27749725 3,961 Intergenic

aChromosome 11 position according to NCBI Build 37.1 genome assembly, bIn base pairs.
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Table 6
The summary statistics of association analysis of between rs10835211 and A-specific resilience scores

Regions Effect size p Adjusted p

L. angular gyrus 0.228 (0.091) 0.012 0.120
L. superior parietal lobule 0.244 (0.092) 0.0080 0.077
R. angular gyrus 0.242 (0.093) 0.0094 0.090

Fig. 5. Locus-zoom plots of BDNF-SNP-significant signals in L. angular gyrus, L. superior parietal lobule, R. angular gyrus. Genomic
position is depicted on the x-axis. The y-axis shows the –log(10) of the p-value.

the Ecog test, where the sCCA coefficients reflect the
correlations between resilience effect and the clinical
outcome. In the second linked dimension, it seems
that RAVLT learning score (sCCA coefficient: 0.73)
is a more predominant factor than Ecog study part-
ner organization score (sCCA coefficient: 0.39). It
is worth noting that the A-specific resilience effect
under investigation is associated with education level.
This suggests that subjects have resilience to changes
in their memory and everyday cognition. Cognitive
reserve has been found to decrease risk of demen-
tia even in patients with subjective cognitive decline,
suggesting that resilience in everday cognition may
be an important marker for decreased progression to
clinical AD [25].

The sex difference in resilience effect

First, we examine the sex difference in A-specific
resilience effect through the sex-by-resilience inter-

action in our model. The statistical testing results of
sex differences in A-specific resilience w.r.t. educ-
tion are summarized in Table 7, where only display
the regions showing significant sex differences in
resilience effect. Four regions (L/R superior pari-
etal lobule, L. precuneus, and L. subcallosal gyrus)
showed the significant sex difference in A-specific
resilience effect from higher education. Similarly,
three regions (L. precuneus, L. superior occipital
gyrus, and R. superior parietal lobule) were observed
the significant sex difference in A-specific resilience
effect from occupation.

Second, we examined the sex difference in T-
specific resilience for each brain region w.r.t. to
education and occupation. Similarly, we display the
statistical testing results for the regions showing
significant sex differences in Table 8. R. collateral
sulcus in the middle of the right hemisphere showed
significant sex differences in both T-resilience w.r.t
education and occupation.
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Table 7
The statistical summary of the nodes with significant gender difference in A-resilience w.r.t education and occupation

SES factor Region name β
Amyloid×

Mid SES × Male

p β
Amyloid×

High SES × Male

p

(Standard Error) (Standard Error)

Education
L. Superior parietal lobule –0.109 (0.054) 0.042 –0.100 (0.051) 0.051
L. Precuneus –0.130 (0.048) 0.006 –0.114 (0.046) 0.013
L. Subcallosal gyrus –0.035 (0.048) 0.4676 –0.116 (0.047) 0.014
R. Superior parietal lobule –0.135 (0.055) 0.015 –0.096 (0.052) 0.064

Occupation
L. Precuneus –0.162 (0.048) 0.028 –0.146 (0.046) 0.038
L. Superior occipital gyrus –0.261 (0.117) 0.026 –0.199 (0.114) 0.0821
R. Transverse temporal gyrus –0.222 (0.112) 0.048 –0.149 (0.107) 0.163

*The significant level is 95% and the sample size is 1086.

Table 8
The statistical summary of the nodes with significant gender difference in T-resilience w.r.t education and occupation

SES factor Region name β
Tau×

Mid SES × Male

p β
Tau×

High SES × Male

p

(Standard Error) (Standard Error)

Education
R. Collateral sulcus middle RH –0.097 (0.061) 0.114 –0.111 (0.052) 0.033

Occupation
R. Collateral sulcus middle RH –0.130 (0.099) 0.189 –0.303 (0.083) 0.0003

*The significant level is 95% and the sample size is 346.

Fig. 6. The linked dimensions between A-specific resilience and
itemized clinical outcomes. The outer and inter rings correspond
to the first linked dimension (top canonical variate) and the sec-
ond linked dimension, respectively. It is clear that the first linked
dimension consists of three factors (EcogSPTotal, EcogSPOrga,
and EcogSPMem) and the second linked dimension consists of
two major factors (RAVLT Learning and EcogSPOrga), where
the sCCA coefficients indicate the correlation between resilience
effect and the underlying clinical outcome.

DISCUSSION

A major challenge in the care and management
of AD is the paradoxical relationship between the
burden of AD pathology and its clinical outcome
[5, 26]. Recent evidence shows cognitive reserve,
the brain’s capability to preserve cognition despite
underlying AD pathology, is a key determinant that
moderates clinical progression [5–8, 16, 26–28]. In
this context, it is of high demand to understand
the neurobiological basis of brain resilience and the
multi-factorial role of environmental factors such as
education. Importantly, the unprecedented amount of
longitudinal neuroimaging data allows us to investi-
gate the effect of brain resilience in cognitive decline,
which sets the stage for precision medicine of AD
treatment.

In this study, we present a novel computational
measurement to characterize the regional resilience
underlying the mechanistic pathway of A-T-N
biomarkers. We have identified several brain regions
that manifest resilience to A� and tau biomarkers.
Furthermore, we have identified resilience effects
that are potentially correlated with rs10835211 SNP
of the BDNF gene. The sCCA analysis is used to
establish the link between resilience and cognitive
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outcomes. We found that cognitive measures of learn-
ing and memory demonstrate resilience, which is
aligned with previous studies of the cognitive reserve
[29].

Mounting evidence shows that APOE manifests
sex-specific patterns through neuroimaging data and
cerebrospinal fluid biomarkers of A� and tau [30,
31]. However, the mechanism of how sex-specific
interaction exerts the resilience effect on AD risk and
putative endophenotypes with a clear genetic con-
nection is largely elusive. As a pilot study, we further
examine the sex differences at the brain regions show-
ing resilience to the pathological burden by evaluating
the joint effect between sex and identified resilience
measurements. Although the joint effect does not
show the significant difference between males and
females, the estimated effect size of the interac-
tion terms is negative in all testings, which implies
females with higher education or better occupation
might have the advantage in moderate the pathologi-
cal burden.
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LT, Ebmeier KP, de Lange A-MG (2021) Prediction of
brain age and cognitive age: Quantifying brain and cognitive
maintenance in aging. Hum Brain Mapp 42, 1626-1640.

[10] Zhang Y, Hao Y, Li L, Xia K, Wu G (2020) A novel
computational proxy for characterizing cognitive reserve in
Alzheimer’s disease. J Alzheimers Dis 78, 1217-1228.

[11] (2020) 2020 Alzheimer’s disease facts and figures.
Alzheimers Dement 16, 391-460.

http://www.fnih.org
https://www.j-alz.com/manuscript-disclosures/21-5160r1
https://www.j-alz.com/manuscript-disclosures/21-5160r1


1362 D. Hu et al. / Characterizing the Resilience Effect of Neurodegeneration for the Mechanistic Pathway of Alzheimer’s Disease

[12] Destrieux C, Fischl B, Dale A, Halgren E (2010) Automatic
parcellation of human cortical gyri and sulci using standard
anatomical nomenclature. Neuroimage 53, 1-15.

[13] Lo RY, Jagust WJ, Alzheimer’s Disease Neuroimaging
Initiative (2013) Effect of cognitive reserve markers on
Alzheimer pathologic progression. Alzheimer Dis Assoc
Disord 27, 343-350.

[14] Rose D, Pevalin DJ (2003) A Researcher’s Guide to the
National Statistics Socio-economic Classification. SAVE
Publications Ltd.

[15] Wilms I, Croux C (2015) Sparse canonical correlation anal-
ysis from a predictive point of view. Biom J 57, 834-851.

[16] Stern Y (2017) An approach to studying the neural correlates
of reserve. Brain Imaging Behav 11, 410-416.
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[18] Caspers S, Röckner ME, Jockwitz C, Bittner N, Teumer A,
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